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There exists a known self-mddelllng solution (see, e.g. [l and 23), of the 
problem of a cylindrically symmetric shock wave converging towards its axis. 
Any other SoLutlon of this problem in the vicinity of the axis can be regarded 
as asymptotic to the self-modelling one. The self-modelling solution indi- 
cates an unlimited growth of temperature and velocity with decreasing dis- 
tance from the axis. Therefore, in the space near the axis of an order of 
magnitude of the mean tree path of particles,dlssipatlve phenomena, In the 
first Instance due to viscosity and thermal conductivity, become pronounced. 

In the following a solution has been derived for the case of a fully lon- 
lzed plasma which takes into account these phenomena. It can be treated as 
a refinement of the self-modelling one. 

The proposed solution may be criticized as to its physical meaning, 
ticularly with respect to the structure of the shock wave front, on the 

par- 

grounds that a hydrodynamic approximation Is Inadequate for a case In which 
the characteristic scale for the change of magnitudes Is of the order of the 
free path of particles. Nevertheless, one can reasonably expect that the 
hydrcdynamic approach will give a qualitatively correct representation of 
the phenomena In the vicinity of this axis with viscosity and thermal c'on- 
ductlvlty effects accounted for, as much as its application was proved under 
the more stringent conditions In the case of a plane shock wave [3]. 

1. We shall now consider a system of hydrodynamic equations which take 

Into account fundamental dissipative phenomena, namely: thermal conductivity 

and viscosity of Ions, thermal conductivity of electrons, and the energy 

exchange between Ions and electrons by way of collision. For a cylindrically 

symmetric wave in a perfect plasma of mass N of ions, Ion unit changes, and 

assuming the adiabatic exponent to be Y= "/, > this system of equations 

IS c41 
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Here u Is the coefficient of viscosity of Ions; aL and X, are, respec- 

tively, tht, thermal conductivity coefficients of Ions and electrons; 0 1s 

the rate of energy transfer from Ions to electrons, and u and p are the 

velocity and density of plasma. In these equations account has been taken 

of the different temperatures of the Ions and electrons, denoted by T and 

G > respectively. The limits of appllcablllty of these equations to plasma 

are known [5]. 

In accordance with the kinetic theory of plasma Its dissipation parameters 

are C6 to 81 

(2) 

The mean free path of Ions and electrons Is given by 

l. = M VW2 
1 pe4L ’ 

l 
e 
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Here L Is the Coulomb logarithm, m Is the mass of an electron, e Is 

the elementary electric charge, and k the Boltzmann's constant. 

xi = 3.1p. (gj”*$- 

Q = 5.4 ($$~~~-lp2 ; (T - 8) (;)-“’ 

(y* /A0 (Z)“’ + (4) 

From (2) we easily find 

Fig. 1 

/Lo = 1.08-g (5) 

In order to arrive at quantlta- 

tlve results we shall consider a 

a deuterlum plasma, and assume 

(M / Vl)"'? = 60.5. 
We shall apply system (1) to the solution of a problem, where P - ~b and 

u = T = 0 = 0 are given on the segment O<r<P at the initial Instant. 

The boundary conditions are 

u=o, a~=“=o 
ar for r = 0 

dr” 
dt = u, $P(T+@)=f(t) for r = P 

where function f(t) Is the same as in the self-modelllng solution (*) 
, 

*) Strictly speaking, the left-hand side of the second boundary condition 
which represents the radial component of the Impulse etream should read 

klMp(T + @) - d,,, where d,, Is the component of the vlscoalty tensor. 
However, the value of the additional term d,, la very amall. 



If' the moment of focusing o f the self-modelllng wave is taken as the zerc 

time reference, then the self-modelllng solution depends only on parameters 

pc and yO, where tr+ = go is the equation of the shock wave front, 

V I V(U) is the self-modelling exponent which in the case of Y I T3, is 

v - 1.226 . 

Stated In this way, our problem has four independent determining parame- 

ters, viz. po, co, v. and rO. We she12 substitute dimensionless variables, 
selecting as units the following 

It will be seen that To is 

characteristic of the mean free 

path, as 

that 

Here 

less and 

from (3) and (7) we find 

ti~r”T2 Ip @t 

T and p are dimension- 

the factor of the order of 

1 has been omitted. 

It can be easily proved that the 

dimensionless functions which we 

Sh811 8g8in denote by p, u, T and 

$, must satisfy the system of equa- 

tions (I) and (4) (with cr,- */#ml), 

the initial conditions u-T=@ =O 

and p-l for 0 < r < I? = r"! rO 

and the initial conditions (6) in 

their d~rnen~~~n~ess-form. Conse- 

quently, there remains in our prob- 

lem one determining parameter F 

which may be called the Reynolds 

Number. Let us consider the influ- 
ence of this parameter by assigning 

to it a certain value Ff = R* . The 

problem as stated and with boundary 

conditions as in the self-modelling 

solution has a meaning, only if at 

radix F-??* the effects of vlsco- 

slty and thermal conductivity are 

insignificant. In other words, It 

is essential that the shock wave 

reaches the self-modelling state 

before any of the dissipative effects 

begin to take place. But then for 

f > P, the solution can also be 
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assumed to be a self-modelllng one, as this will lead to the same conditions 

for f-R*, i.e. any arbitrary selection of R >,R*, will have no effect 

on the solution for f</i,. Therefore, If the stated problem has any mean- 

ing, its solution is independent of parameter R , and it will be sufficient 
to solve it for I'>R, once only. The numerical value of I), c8n be deter- 

mined in the following manner. The effects due to viscosity 8nd thermal 

conductivity become appreciable 8t distances of the order of E . From For- 

mula (8) we have 
Ei I TS 

-7 ==H -T 
c-v 

These effects will be negligible at radii - r" , whenever t,/r" is suf- 

ficiently small. Wlth T and I, taken from the self-modelling solution, 

we obtain From (9) R,al . 

There exists, therefore, a category 
of problems concerning converging shock 
waves in which dissipative effects may 
alter their solution qU8litatiVely. aa 
compared to the results obtained in the 
self-modelling solution. A similar 
situation had been noted in [93 which 
dealt with the problem of flooaing of 
bubbles In a viscous Fluid For which 
two qualitatively different types of 
solution were obtained. 

Our problem was solved by 8 numeri- 
cal method similar to the described in 
f43. Some of the results of these 
computations 8re given below. There la 
a great Simil8rity between the self- 
modelllng solution and the solution 

Fig. 5 

for a converging shock wave up to the 
moment at which the distance of the 
wave Front From the axis becomes com- 
parable to the width of the blurred 
zone of the front, i.e. to the free 
path length Ii ==: X$/p. The most slgni- 
flcant differences between the two 

solutions become apparent after the reflection of the wave from the axis. 
The distribution and numerical vslues of p, u, T and 8 are shown For this 
stage 8s functions of r In Figs. 1 to 4 for moments of time indicated 
thereon. Fig.5 gives p, T and Q as functions of time. 

In the self-modelling solution the density at the moment of Focusing 
(t = 0) is throughout equal 7, then It increases up to the moment of arrival 
of the reflected wave to 11.7, when it jumps to 22.9. Attheaxis p PO, 
while the mean density in the space between the axis and the reflected wave 
it iS equal to 19.2 at 811 times. 

It will be seen from a comparison of our solution (Fig.1) with the self- 
modelling one that the greatest difference in densities appears in the vici- 
nity of the axis where p a 20 to 24. At the reflected wave front it is 
close enough to p - 24 to 22, 8s given by the self-modelling solution, while 
the mean density is somewhat greater. The formula For the maximum tempera- 
ture T,, arrived at in the self-modelling solution For a given rsdius r 
is Tn,ax = 0.224r-0~4=, and is reached at the reflected wave front. The cor- 
responding value of T + 0 c8loUlated for distances up to r a 0.1 differs 
significantly from T, The zone in which 0 -C r < 0.1 may therefore be 
considered 8s that for which the proposed solution differs from the self- 
modelling one. Jt is of the order of several tens of the free path. Inside 
it T + 6 <T,,,, and T and o reach their maxim8 of 0.614 and 0.~68, 
respectively, at the axis. 
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The proposed method can be applied for the theoretical assessment of tem- 
peratures and densities at the focusing point of shock waves not only of an 
Ionized plasma but for other problems Involving dissipative phenomena of a 
different nature. 

!Fhe Authors wish to express their thanks to V.V. Palelchlk, who had car- 
ried out all of the computations on a computer, and to 1a.M. Kazhdan for 
kindly putting at our disposal the results of his calculations of the self- 
modelllr-q solution. 

BIBLIOGRAPHY 

1. Gtierlay, G., Starke kugellge zyllndrlsche Verdlchtungsst6sse In der 
N&e des Kugelmlttelpunktes bzw der Zyllnderachse. Luftfahrtforschung, 
vo1.19, tE 9, 1942. 

2. Stanlukovlch, K.P., Neustanovlvshlesla dvlzhenlla sploshnol sredy (Non- 
stabilized Motions of a Uniform Medium). Gostekhlzdat, 1955. 

3. Llepmann, H.W., Naraslmha, R. and Chahlne, M.T. Structure of a plane 
shock layer. physics Fluids, vo1.5, rE 11, l&2. 

4. D'lachenko, V.F. and Imshennlk, V.S., Skhodlashchalasla tslllndrlcheskala 
udarnala volna v plasme s uchetom struktury fronta (Convergent cylin- 
drical shock wave In a plasma with consideration of the front struc- 
ture). Zh.vychlsl.Mat.mat.Flz., Vo1.3, Np 5, 1963. 

5. Imshennlk V.S., 0 strukture udarnykh voln v vysokotemperaturnol plotnoi 
plasme 1 On the structure of shock waves In a high-temperature dense 
plasma). Zh.ekap.teor.Flz., Vo1.42, tB 1, 1962. 

6. Chapman, S. and Cowling, T.G., The mathematical theory of non-uniform 
gases. Camb.Unlv.Press, 1939. 

7. Imshennik, V.S., 0 teploprovodnostl plazmy (Thermal conductivity of 
plasma). Astr.Zh., Vo1.38, tE 4, 1961. 

8. Landau, L.D., Klnetlcheskoe uravnenle v sluchae kulonovskogo vzalmodel- 
stvlla (KInematlc equations of the Coulomb Interaction). Zh.eksp.teor. 
Flz., vo1.7, tE 2, 1937. 

9. Zababakhln, E.I., Zapolnenle puzyr'kov v vlazkol zhldkosti (The collaplse 
of bubbles In a viscous fluid). Prviy Vo1.24, tE 6, 1960. 

Translated by J.J.D. 


